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XML technologies have been recently introduced in network management towards
alleviating limitations of SNMP. The XML W3C standard, along with XML technolo-
gies has the potential to boost open, interoperable, cost-effective and standards-based
management solutions. This paper highlights recent efforts towards XML network
management and introduces an architecture supporting XML-based network manage-
ment applications. This architecture specifies a runtime environment that parses XML
documents containing composite operations for individual devices, as well as for het-
erogeneous mutli-vendor networks. Management operations in the scope of XML doc-
uments are defined in a programmable fashion based on an XML-based composition
language supporting aggregations of elementary operations, looping commands, con-
ditional statements, as well as simple rules signifying the occurrence of specific events.
The introduced environment allows network managers to define management opera-
tions featuring high-level semantics and accordingly produce sophisticated applications
through XML authoring. Following the illustration of the architecture, its composition
language and issues relating to security and error handling, the paper ends up presenting
a prototype implementation, along with associated performance evaluation results.

KEY WORDS: XML Management; SNMP; EML; NML; MIB; XML schema; DTD;
Programmability.

1. INTRODUCTION

During the last decade, IP-based networks and services have evolved, matured, and
proliferated. Nevertheless, few advances have taken place in the area of network
management of IP networks. The simple network management protocol (SNMP)
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is still the dominant network management protocol for enterprise IP networks, as
well as for the Internet. SNMP features high penetration and a large base of ap-
plications. However, network managers identify several limitations of the SNMP
management framework, mainly relating to configuration management, applica-
tion development complexity and scalability [1]. Configuration management inef-
ficiencies stem from SNMP’s ineffectiveness in bulk information transfers. SNMP
application development has to deal with low-level programming, due to the poor
semantics of SNMP commands and management information bases (MIB). Also,
the use of proprietary MIBs complicates the management of heterogeneous, multi-
vendor, multi-device networks. Moreover, reusability of management applications
can hardly be achieved.

In view of these limitations, network engineers and researchers have been
investigating solutions boosting openness, interoperability and standardized man-
agement interfaces, while also facilitating application development. The extensible
markup language (XML), standardized as a meta-markup language by W3C, can
provide such solutions [2], since:

e XML is easy to generate, parse and process, which provides flexibility in
handing XML representations of management information.

e XML supports sophisticated data structuring, and can therefore handle
complex organizations of management information. XML DTD (docu-
ment type definitions) and XML schemas specify and validate the structure
of XML documents, thus alleviating developers from tedious tasks.

e XML comes with numerous W3C technologies (http://www.w3c.org) sup-
porting rapid development of XML based network management applica-
tions. Characteristic examples are the extensible stylesheet transforma-
tions (XSLT), which transform XML documents to other formats (e.g.,
hyper text mark-up language—HTML) and XPath/XQuery discovering
XML elements subject to criteria.

e XML operations can be transformed to simple object access protocol
(SOAP) operations allowing management functions to be exported as Web
Services. This allows for loose integration of heterogeneous distributed
management systems based on the Web Services paradigm.

o XML has high-level semantics and is therefore appropriate for performing
bulk configuration operations.

These benefits of XML for network management have given rise to research, stan-
dards and industrial initiatives. Early research work focused on designing DTDs
corresponding to SNMP MIBs and vice versa, as well as on algorithms for translat-
ing MIBs to XML. The most prominent of these efforts is libsmi [3], which allows
translation of SNMP SMI to other languages, including XML. Libsmi has been ex-
tended with the mibdump utility, which translates MIBs directly to XML. Recent
work includes the implementation of XML/SNMP gateways [3, 4], which execute
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XML based operations on SNMP devices. While gateways concentrate on groups
of individual management operations, other XML-based architectures move to-
wards more sophisticated operations (e.g., the Avaya work included in [2, 4]).
Closely related to the XML-based research developments are other research pro-
totypes implementing management solutions based on Web services (e.g., [5, 6]).

Standardization activities have been launched in the Internet and network
management communities. The distributed management task force (DMTF) has
worked towards representing its common information model (CIM) as an XML
DTD. OASIS (management protocol technical committee) is working towards
open industry standard management protocols supporting XML mechanisms to
manage elements in distributed environments. The internet engineering task force
(IETF) has recently established the network configuration working group (net-
conf) [7], which adopts XML for data encoding and data transfer in configuration
management. Furthermore, the network management research group (NMRG) of
the internet research task force (IRTF), has allocated significant effort in iden-
tifying benefits of XML network management, as well as in developing related
solutions [8].

There also industrial efforts on XML network management, which have pro-
duced proprietary products, the most prominent examples being Juniper’s JUNO-
Script (an XML application programming interface—API to JUNOS [9]), 2Wire
(http://www.2wire.com/) using a modified version of the XML remote procedure
call (XML-RPC) protocol to manage their DSL system over a Web-enabled in-
frastructure, Cisco (http://www.cisco.com/) with the CNS Netflow Engine being
manageable through XML messages, and NextHope (http://www.nexthop.com/)
offering an XML management interface to their GateD vendor independent router
software .

Most of the previous efforts have focused on managing individual network el-
ements or devices [10]. Few efforts have addressed architectures dealing with both
network element management operations (element management layer—EML),
and network wide management operations (network management layer—NML).
XML technologies can be applied in both EML and NML towards supporting
operations featuring high-level semantics. The latter can be implemented based
on standard XML documents, which provide an alternative to the proprietary lan-
guages used by state of the art Network Management Systems (NMS). This is also
in line with recent efforts towards exploiting XML technologies in automating
management tasks, such as for example in the case of Microsoft’s web services
for management extension (WMX) [11].

This paper presents an XML based network management architecture ad-
dressing both EML and NML. The architecture provides the means for struc-
turing complex management operations (at the EML and NML levels) as XML
documents. EML composite operations consist of several atomic management
operations each one affecting or querying a single MIB object. NML composite
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operations are structured as a set of composite EML operations. Authoring specifi-
cations (XML schemas) guide the development of XML documents, according to
a composition language. This composition language reflects the core programma-
bility of the system, since it makes provisions for aggregating primitive SNMP
(get/set operations) into higher-level operations. Moreover, the composition
language supports additional features such as allowing for repeatedly executing
operations (i.e., looping), processing information elements and enforcing actions
when particular conditions are met. Based on the XML schemas specifying this
composition language, network managers define composite management opera-
tions as XML-based APIs at both the EML and the NML levels. XML management
applications are authored through assembling API operations and defining param-
eter values. XML authoring of APIs and applications can be facilitated through an
editing environment (e.g., graphical user interface—GUI editor). Editing environ-
ments can boost the extensibility and reusability of XML documents, and overall
increase network managers’ productivity.

The architecture specifies also a runtime environment that parses and exe-
cutes XML-based applications. This environment renders application development
a matter of XML authoring. This approach results in cost effective application
development, while increasing authoring flexibility and boosting the programma-
bility of management operations [12]. Also, a potential standardization of APIs
can allow third parties (e.g., vendors, NMS providers) to produce network man-
agement applications. This idea is pertinent to network programmability defined
in the scope of the IEEE P1520 initiative [13]. Network programmability can
boost a host of network and traffic management functionalities including quality
of service (QoS) management [13—15], routing [16] and SLA management and
configuration in DiffServ environments [17, 18]. Note also that through adding
XML functionality on NML operations, we can extend the introduced architecture
to service management [19].

Based on this architecture we have implemented a network management
system enabling authoring and execution of XML management documents com-
prising EML and NML management applications. This system, namely XMLNET
(http://www.telem.ntua.gr/xmlnet), makes use of a rich set of XML technologies
and XML-based programming techniques. Furthermore, we have conducted a set
of performance experiments relating to the execution time of composite manage-
ment operations. These experiments demonstrate that the programmability of the
XMLNET system comes at a very low performance overhead.

The paper is structured as follows: Section 2 following this introduction
presents the overall architecture and highlights the main building blocks, namely
the EML and NML XML engines. Section 3 presents the XML EML Engine, and
Section 4 emphasizes the composition constructs available to network managers
for defining XML based APIs. Following the EML implementation details,
Section 5 describes the NML engine. Section 6 illustrates the techniques and
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technologies that support a prototype implementation of the architecture. Based
on this prototype, Section 7 presents measurements addressing performance
implications of the implemented solutions. Finally Section 8 concludes the paper.

2. XML NETWORK MANAGEMENT ARCHITECTURE

Figure 1 depicts the overall architecture for programmable XML-based net-
work management. We introduce the following terms:

o Atomic management operation: An element-level operation querying or
altering the value of a particular MIB object or object instance. Practically,
atomic operations are simple get or set operations referring to an object
identifier (OID).

e Composite EML operations: Higher-level EML operations combining one
or more atomic operations. Composite EML operations may access several
OIDs.

o Composite NML operations: Higher-level operations combining one or
more composite EML operations. Composite NML operations may target
several OIDs residing on multiple devices.

e XML EML API: XML document containing a set of composite EML
operations, their breakdown into constituent atomic operations, as well as
‘default’ values for all set() operations.

e XML NML API: XML document containing a set of composite NML
operations, their resolution into constituent composite EML opera-
tions, as well as ‘default’ values for EML operations involving set()
operations.

o XML EML application: XML document combining EML API invocations
with an appropriate set of parameters overriding default API values.

e XML NML application: XML document combining NML API invocations
with an appropriate set of parameters overriding default API values.

The architecture relies on defining and structuring XML EML APIs for each
network element and XML NML APIs for the whole network. Network managers
define these APIs based on the management requirements of their network. Each
API’s structure conforms to an XML schema. XML schemas specify how atomic
operations and composite EML operations are respectively combined to composite
EML and NML operations. Similarly, XML applications are also authored based
on XML schemas. Using XML schemas for specifying the structure of both
API and applications facilitates authoring and validation of the respective XML
documents. In the tables, we include XML schemas specifying the structure of:

— XML EML APIs and Applications (Tables I and III)
— XML NML APIs and Applications (Tables II and IV).
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These schemas correspond to those used in the scope of the XMLNET system
implementation, which is described in a later paragraph.

The architecture depicted in Fig. 1, specifies a run-time XML parsing environ-
ment allowing execution of XML application documents. Thus, the architecture
specifies a system that accepts XML application (EML or NML) documents,

Table I. EML API Schema Definition

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"s>

<xs:element name="author" type="xs:string"/>
lement name="description" type="xs:string"/>
lement name="dns-name" type="xs:string"/>
<xs:element name="element-management-scheme">

<xs:complexType>

<Xs:sequence>
<xs:element ref="name"/>

<X ref="dns-name"/>
<x: ip-address"/>
<X description"/>

<X ref="author"/>
<x ref="version"/>
<xs:element name="operations" type="operationsType"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="execType">
<xs:attribute name="command" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="getType">
<X$:sequence>
<xs:element name="if" type="ifType" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="parameter" type="xs:string" use="required"/>
ttribute nam oid" type="xs:string" use="required"/>
<xs:attribute name="type" use="required"s>
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="C"/>
<xs:enumeration value="S"/>
<x8:enumeration value="T"/>
<xs:enumeration value="I"/>
</xs:restriction>
</xs:simpleType>
</xs:attributes>
<xs:attribute name="seq" type="xs:string" use="required"/>
<xs:attribute name="deriv">
<xg:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="false"/>
<xs:enumeration value="true"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="dt" type="xs:string"/>
</xs:complexType>
<xs:complexType name="ifType">
<xs:sequence>
<xs:element name="exec" type="execType" minOccurs="0"/>
<xs:element name="set" type="setType" minOccur o"/>
<xs:element name="get" type="getType" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="comparator" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="greater"/>
numeration valu equals"/>
<xg:enumeration value="less"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
<xs:element name="ip-address" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
<xs:complexType name="operationType">
<Xs:sequence>
<xs:element ref="description"/>
<xs:element name='"process" type="processType"/>
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Table I. Continued.

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="snmp-interface" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="java"/>
<xs:enumeration value="xml"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="loop" use="optional">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="true"/>
<xs:enumeration value="false"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="loop-period" type="xs:string" use="optional"/>
<xs:attribute name="priority" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="operationsType">
<xs:sequence>
<xs:element name="operation" type="operationType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="processType">
<xs:choice maxOccurs="unbounded">
<xs:element name="get" type="getType"/>
<xs:element name="calc" type="calcType"/>
<xs:element name="set" type="setType"/>
</xs:choice>
<!--<xs:sequence>
<xs:element name="get" type="getType" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="get" type="setType" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="calc" type="calcType" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequences>-->
</xs:complexType>
<xs:complexType name="setType">
<xs:attribute name="parameter" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="value" type="xs:string" use="required"/>
<xs:attribute name="seq" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="calcType">
<xs:sequence>
<xs:element name="if" type="ifType" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="add"/>
<xs:enumeration value="substract"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="parameterlseq" type="xs:string" use="required"/>
<xs:attribute names="parameter2seq" type="xs:string" use="required"/>
<xs:attribute name="seq" type="xs:string" use="required"/>
<xs:attribute name="deriv'"s
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="false"/>
<xs:enumeration value="true"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="dt" type="xs:string"/>
</xs:complexType>
<xs:element name="version" type="xs:decimal"/>
</xs:schema>

executes them on the network elements, and returns the results. This system re-
ceives XML (EML or NML) application documents from remote (e.g., based on
XML-RPC). XML processing is performed by two parsing systems:
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1. The EML engine that processes EML XML applications based on the EML
XML API. According to the P1520 [13], the XML EML API constitutes
an L-interface.

Table II. NML API Schema Definition

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"s
<xs:element name="nml-api">
<xs:complexTypes
<xs:annotation>
<xs:documentation>
The root node of all NML API documents.
</xs:documentation>
</xs:annotations>
<xs:sequence>
<xs:element ref="name"/>
<Xi lement ref="description"/>
<xs:element ref="nm-functions"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="name" type="xs:string"/>
lement name="description" type="xs:string"/>
<xs:element name="nm-functions">
<xs:complexType>
<xs:annotation>
<xs:documentation>
The root of the declaration of a NML function consisting of

several EML operations.
</xs:documentation>
</xs:annotation>
<Xs:sequence>
<xs:element ref="func"/>
</xs:sequence>
</x8:complexType>
</xs:element >
<xs:element name="func">
<xs:complexType>
<xs:annotation>
<xg:documentation>
The root of the declaration of a NML function consisting of
several EML operations.
</xs:documentation>
</xs:annotation>
<x8:sequence>
<xs:element ref="description"/>
<xs:element ref="process"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="priority" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="process">
<xs:complexType>
<xs:sequence>
<xs:element ref="operation" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="operation"s>
<xs:complexType>
<xg:annotation>
<xs:documentation>
The root of declaration of the EML operations which comprise
the NML function.
</xs:documentation>
</xs:annotation>
<xXs:sequence>
<xs:element ref="param" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="eml-operation" type="xs:string" use="required"/>
<X ttribute name="node" type="xs:string" use="required"/>
<xs:attribute name="snmp-interface" use="required">
<xg:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="java"/>
<x8:enumeration value="xml"/>
</xs:restriction>
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Table II. Continued.

</xs:simpleType>
</xs:attribute>
</xs:complexTypes>
</xs:element>
<xs:element name="param">
<Xs:complexType>
<Xs:annotation>
<xs:documentation>
The declaration of the parametr of the several EML operations

which comprise the NML function.
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" use
<xs:attribute name="type" use
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:schema>

"required"/>
"required"/>

Table III. EML Application Schema Definition

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="caller" type="xs:string"/>
<xs:element name="dns-name" type="xs:string"/>
<xs:element name="ip-address" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
<x8:complexType name="operationType"s>
<Xs:sequence>
<xs:element name='"parameter" type="parameterType" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="snmp-interface" use="required">
<xs:simpleType>
<xg:restriction base="xs:NMTOKEN">
<xs:enumeration value="java"/>
<xs:enumeration value="xml"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="priority" type="xs:string" use="required"/>
</xs:complexTypes>
<xs:complexType name="operations-requestType">
<xs:sequence>
<xs:element name="operation" type="operationType"/>
</x%s:sequences>
</xs:complexType>
<xs:complexType name="parameterType">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="o0id" type="xs:string" use="required"/>
<xs:attribute name="seq" type="xs:string" use="required"/>
<xs:attribute name="type" use="required"s>
<xs:simpleType>
<xg:restriction base="xs:NMTOKEN">
<xs:enumeration value="S"/>
<X numeration value="T"/>
<xi numeration value="C"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
<xs:element name="xmlnet-request"s>
<xs:complexType>
<xs:sequence>
<xs:element ref="name"/>
<xs:element "dns-name" />
<xs:element "ip-address"/>
<xs:element "caller"/>
<xs:element name="operations-request" type="operations-requestType"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
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Table IV. NML Application Schema Definition

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="NML-Application">
<xs:complexType>
<xs:annotation>
<xs:documentation>
The root node of all NML application documents.
</xs:documentations>
</xs:annotations
<Xs:sequence>
<xs:element ref="func"/>
</x8:sequences>
</xs:complexType>
</xs:element>
<xs:element name="func">
<xs:complexType>
<xs:annotationx>
<xs:documentations>
The root node of the NML function to be invoked.
</xs:documentations>
</xs:annotations>
<xs:sequence>
<xs:element ref="operation" maxOccurs="unbounded"/>
</x8:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="priority" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="operation">
<xs:complexType>
<xs:annotation>
<xs:documentation>
The declaration of the various EML
applications that comprise the NML function.
</xs:documentations
</xs:annotations
<xs:sequencex
<x8:element ref="param" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="eml-operation" type="xs:string" use="required"/>
<xs:attribute name="node" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="param'">
<xs:complexType>
<xs:annotation>
<xs:documentation>
The declaration of the parameters passed to the
EML application that comprise the NML function.
</xs:documentations
</xs:annotations>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

2. The NML engine that processes NML XML applications based on the
NML XML APIL In P1520 terms [13], the NML API constitutes a U-
interface.

The EML engine processes XML EML application documents, identifies com-
posite EML operations, resolves them to atomic operations and executes them on
the network element. At a higher level, the NML engine processes NML appli-
cation documents, identifies composite NML operations, resolves them to EML
operations, constructs appropriate EML documents and resorts to EML engines to
execute them. Both the EML and NML engines produce XML documents contain-
ing the results of the composite management operations. These XML documents
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feature a structure identical to the XML applications, with values representing the
actual status of the device after performing the operations.

A key element of this architecture is a composition language specifying how
atomic operations are combined into composite ones, as well as how composite
ELM operations are combined to composite NML operations. The composition
language realizes the programmability of the architecture, since it transforms
XML documents to simple network management programs that can be parsed and
executed by the run-time environment. The XML schemas defining the structure
of application and API documents reflect the constructs and capabilities of the
composition language.

As far as the presentation and visualization of the network management
applications is concerned, a rendering subsystem presents XML results to a con-
sole. This subsystem fulfills visualization requirements relating to the application
and/or user preferences. XML technologies (e.g., extensible stylesheet—XSL)
can be exploited towards developing presentation mechanisms. XSL can be used
to filter XML documents returned by XML applications. Thus, XSL presentation
templates are required, along with (EML or NML) XML application documents.
XSL templates can be stored in a repository and retrieved based on application
requirements.

Overall, the major benefit of this architecture is that application development
becomes a matter of XML authoring, which is more cost effective than conven-
tional SNMP programming or scripts (e.g., in Perl, Tcl) authoring. Moreover, the
XML APIs constitute XML protocols allowing execution of NML and EML oper-
ations. These protocols expose an interface to potential management applications.
A standardization of this interface can make network management operations
open and programmable. Openness hinges on that third party vendors and/or net-
work managers can use the APIs to develop applications. Programmability allows
different network management applications to be authored through writing and
assembling XML documents.

XML interfaces (i.e., APIs) are accessible in a distributed fashion through
conventional distributed programming mechanisms (e.g., XML-RPC, RMI—
remote method invocation, SOAP). Following paragraphs provide an anatomy
of the major XML building blocks of the architecture.

3. ELEMENT MANAGEMENT LAYER ARCHITECTURE

The EML system implements the conventional manager-agent model. Differ-
ent combinations of XML and SNMP on the manager and agent sides are possible
[3]. Our design features an XML-based manager communicating with the SNMP
agent of the device through an XML/SNMP gateway. This paradigm exploits most
of the benefits of XML management, while also incorporating the installed base of
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SNMP devices. Thus, the architecture is applicable to the vast majority of legacy
IP-based networks.

The EML engine parses XML EML documents. Composite management
operations are accordingly resolved into atomic/elementary operations according
to the composition language specified in a subsequent section.

3.1. EML Engine Components
The XML EML engine (Fig. 2) consists of the following components:

e XML DOM parser: Upon the element’s initialization the XML parser
receives the XML EML API of the device. The XML parser processes the
XML API document based on DOM (Document Object Model) processing
and accordingly instantiates a cached, in-memory representation of the
supported composite management operations. The cached representation
accelerates the processing of the EML application document.
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e DOM Cache: The DOM cache module maintains the cached representa-
tion of composite EML operations, which is constructed during the EML
system’s initialization. Having such a representation at hand, the XML
Management Engine can easily match operations contained within the
XML application document to cached operations. Thus, the DOM cache
boosts the performance and scalability of the EML XML manager.

o XML Management Engine: The XML management engine receives XML
EML application documents through a distributed invocation mechanism
(e.g., XML-RPC, Web Services). Accordingly, it parses them, resolves
the composite EML operations from the cache and executes the necessary
atomic operations. The process of looking up operations in the cache can be
greatly facilitated by XPath/XQuery technologies.* Atomic operations are
executed through the XML/SNMP gateway. The result of these operations
follows the reverse direction: results are conveyed from the gateway to the
XML engine, which assembles and delivers them to the application.

o XML Information Model: The XML information model constitutes an
XML representation (e.g., XML schema) of the MIBs supported by the
network elements. Such a representation is produced based on utilities
converting SMI information to XML schemas (e.g., mibdump).

o XML/SNMP gateway: The gateway accesses the low-level management ca-
pabilities (i.e., the SNMP agent) of the device. The XML/SNMP gateway
translates between XML and SNMP representations of the managed ob-
jects. Moreover, it executes SNMP (get()/set()/GetNext()) operations,
collects the results and delivers them to the XML Management Engine.

e Rendering System: A rendering system making use of XSL technology
interfaces with the EML engine and presents EML information.

The EML engine parsing services can be invoked by either the rendering subsys-
tem, or a higher-level NML engine. In the former case XML application documents
are concerned with element manager applications, while in the later they constitute
a part of a composite application on a multi-device network.

Note that trap operations are not straightforward in this design and should be
handled through separate XML-based flows. Separate XML information flows are
required, since some gateway implementations (e.g., the one used in our prototype)
do not support SNMP trap handling. To overcome this limitation an autonomous
process listens for the node’s trap-sending requests. This process retrieves each
trap message, forms an XML message and dispatches it to the rendering engine.

The EML engine is a runtime environment that can be embedded in the
device or hosted in an attached management workstation. The instantiation of the

4Such a mechanism can be implemented using Xpath/XQuery based search engines (e.g., the Java
based XQEngine).
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EML engine presupposes that an EML API has been defined. The definition of an
EML API demands that the network manager has access to the XML Information
model. Whenever a new device is added, the network manager produces an XML
representation of its MIBs, defines the XML EML API and instantiates the EML
engine.

The EML engine can be instantiated with different parameters towards con-
trolling multiple identical devices supporting the same EML API and XML infor-
mation model. In heterogeneous multi-vendor environments different EML APIs
will have to be produced based on different XML information models. To alle-
viate this complexity, the EML engine can make use of an abstract information
model (AIM), corresponding to a generalized XML-based vendor independent
description of MIB objects engaged in the atomic operations. In this case atomic
operations will be mapped to vendor independent objects of the AIM. Defining
and realizing an AIM, as well as performing this mapping are demanding tasks.
A possible solution is the DMTF’s CIM (Common Information Model) and its
related DTD. Alternatively, an AIM can be constructed through abstracting MIB
objects entailed in the operations of interest and mapping them to vendor depen-
dent objects [20].

3.2. Error Handling in EML Composite Operations

A composite EML operation is likely to correspond to a unit of work re-
quiring atomicity from a network manager’s perspective. Specifically, network
managers will bundle together atomic operations towards automating a series of
operations that must be executed in their entirety. As a result, atomic operations
comprising composite EML operations should be executed based on an ‘all-or-
nothing’ guarantee: Either all operations should succeed, or all together fail. Thus,
the successful completion of composite EML operations hinges on the graceful
execution of all comprised atomic operations. This is particularly important for
series of set operations that alter the state of the network element.

The all-or-nothing guarantee raises issues relating to error handling for com-
posite operations. The manager application invoking the EML engine service
should be notified of the overall success of a composite operation. In the case of
a failing configuration management operation, provisions should be made to keep
the network element in a consistent state. A strategy for achieving consistency
is to restore the original values for all objects and instances altered in the scope
of a non-successful composite operation. For every set operation, the old value
of altered object should be initially retrieved and stored, to allow for a potential
restoration. To this end, a transaction manager intercepts all composite operations
stemming from the EML system. The transaction manager retrieves and caches
object value pairs for each elementary operation contained in the composite op-
eration. Accordingly, it audits the success of all the atomic SNMP operations
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comprising the composite operation. In the case where the whole set of operations
are successful, the transaction manager gracefully competes the transaction and
clears the cached values. On the contrary, if at least one operation fails, it under-
takes to restore the element to its previous status, as illustrated in Fig. 3. Even
though restoring an element’s state from cached values seems straightforward,
it entails several practical problems. A major one is that several SNMP agents,
‘lock’ MIB instances and set them in a pending state, with a view to implementing
concurrent access control (i.e., as other processes may attempt to set the target
instance). ‘Locking’ an item prevents restoration to its old value until a time out
‘unlocks’ the object. The transaction manager may therefore need to retry the
restoration process until this succeeds for all instances.

3.3. Security

Security issues should be handled towards robust and secure management
systems. Authentication and encryption of XML messages is a subject of intensive
work, both within the W3C (e.g., in the XML signature working group), and
within OASIS (e.g., the security services committee). At the first place WS-
security describes how to attach signature and encryption headers to Simple Object
Access Protocol messages. Moreover, it specifies how to attach security tokens,
such as X.509 certificates and Kerberos tickets, to messages. At a lower layer
SNMPv3 [21] includes authentication and encryption mechanisms (reflected in
IETF RFCs 2271-2275). RFC 2274 describes the User-based Security Model
(USM) for SNMPv3. In particular RFC 2274 defines the process for providing
SNMP message-level security. Moreover, the USM emphasizes on protecting users
against four threats, namely modification of information, masquerade, message
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stream modification and disclosure. As aresult, enriching the proposed architecture
with state of the art security features demands a framework for mapping XML
security mechanisms to SNMPv3, which is however out of the scope of this paper.

4. EML APPLICATIONS COMPOSITION LANGUAGE

The EML composition language specifies possible ways for combining
atomic operations, while also determining the programmability constructs of the
architecture. Based on these constructs the architecture allows network managers
to automate a wide range of routine management tasks through XML authoring.
In subsequent sections we describe the main composition constructs, which are
also reflected in the XML schema definition outlined in Table 1.

4.1. Serial Combination of Atomic Operations

Atomic operations can be combined in a serial fashion. This is accomplished
through defining composite operations that contain multiple elementary actions
(i.e., conforming to the operationType in the schema). Elementary actions may
correspond to individual set (), get () SNMP operations, or operations perform-
ing simple calculations (i.e., addition, subtraction) between previously derived
parameters.

Combining operations in a serial manner is particularly useful in the scope
of configuration management operations comprising several atomic operations
and impacting a host of different MIB objects. As an example, consider a com-
posite EML operation creating a Virtual Path Connection (VPC) on an asyn-
chronous transfer mode (ATM) switching node, e.g., Create_VPC. This operation
sets different OIDs, corresponding to the circuit name (channelname), the usage
parameter control (UPC) profile of the connection (channelupc), the end points
(channel VPIIn, channel VPIOut) and the lifecycle status of the channel (channel-
status).

4.2. Processing of Management Information (Derivatives)

In several cases network managers are concerned with processing a quantity
(e.g., it is usually handy to derive the rate of change of some quantity). A classi-
cal example involves the requirement for computing network bandwidth from a
cell/packet count on a network interface. Therefore, the XML schema (Table I)
guiding the composition of EML management operations, allows one to specify
retrieval of the derivative a quantity (through setting the flag deriv). Such a speci-
fication implies that the necessary get operations are executed and accordingly the
derivative is computed subject to a specified time interval (i.e., specified by the dt
attribute).
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4.3. Conditions/Thresholds

Conditional functionality is also supported based on an if XML element, as
illustrated in Table 1. Allowable conditions concern comparisons (i.e. <, >, =
operators) on a management quantity, which is retrieved through a get() function.
This composition construct provides flexibility in supporting polling functions,
which are commonly associated with particular actions taking place upon the
occurrence of specific events. Actions are supported by allowing invocation of
external programs (i.e., through the exec element) or services whenever a user-
defined threshold is exceeded.

4.4. Looping

Looping allows the same operation to be executed multiple times. Repeating
an operation is handy towards auto-polling element level quantities (e.g., for
monitoring purposes). The XML schema specified in Table I allows the XML
author to specify the number of times an operation will be executed (i.e., see the
loop attribute). Looping can be combined with the other constructs described in
this section.

4.5. EML API Example

Network managers can combine the constructs towards implementing EML
and NML APIs. API documents comprise sets of operations that are combined
in a programmable fashion based on the composition language. These composite
operations will typically correspond to the routine management tasks. Table V
depicts an example of an XML EML API conforming to the schema definition
described in Table I. This API consists of the following (composite) functions:

e A batch retrieval of parameters (i.e., serialParameterRetrieval), demon-
strating the combination of elementary management commands in a serial
fashion

e A function (i.e., bandwidthCheck) performing a bandwidth calculation
based on cell counting on an interface and accordingly displaying a con-
sole message if a threshold is exceeded. This function demonstrates the
threshold functionality, as well as the support for extracting derivatives of
management quantities.

e A function (i.e., Create_ ATM_PVC) conditionally creating a permanent
virtual circuit (PVC) on an ATM interface. This PVC is created only if the
number of ATM PV Cs established on an interface is less than a given value.
This function combines the conditional logic construct (i.e., if statement),
with the serial combination of functions.

The API functions outlined above are specified for a particular network node
(i.e., an ATM switch). The IP address and DNS name of the IP interface of the
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node that will ultimately receive the SNMP commands are also specified within the
EML XML documents. Using a selected set of these API functions, a management
application can be specified in XML format based on the EML schema definition
contained in Table III. As an example, Table VI depicts a sample EML application
invoking the API functions outlined above.

Table V. Sample EML API

<?xml version="1.0" encoding="UTF-8"?>
<element-management-scheme xmlns:xsi="http://www. w3 org/zool/xMLSChema instance"
xsi:noNamespaceSchemaLocation=".\elm_api_v.1.1.xsd

<name>NMScheme</name>

<dns-name> atml.atm.ntua.gr</dns-name>

<!-- required -->
<ip-address>147.102.7.20</ip-address>
<!-- required -->

<description>Sample EML API Document</descriptions
<author>Dimitris Alexopoulos</authors
<version>0.8</version>
<operations>
<operation name="gerialParameterRetrieval" snmp-interface="java" priority="1">
<description>Serial operation comprised of simple GETTERS

</descriptions>

<process>
<get parameter="system/sysName" o0id=".1.3.6.1.2.1.1.5" type="S" seq="1"/>
<get parameter="gystem/sysDescr" oi 5 1" type="S" ge 2"/>
<get parameter="system/sysUpTime" oi 3"/>

<get parameter="system/sysObjectID" oi 2" type="S" seq="4"/>
<get parameter="gystem/sysContact" oid=". 1 .4" type="S" seq="5"/>

1

.1.3" type="T" se
.1,

1

<get parameter="snmp/snmpInBadversions" oid=".1.3.6.1.2.1.11.3" type="C"

seq="6"/>
<get parameter="snmp/snmpInNoSuchNames" oid=".1.3.6.1.2.1.11.9" type="C"
seq="7"/>
<get parameter="snmp/snmpInPkts" oid=".1.3.6.1.2.1.11.1" type="C" seq="8"/>
<get parameter="gnmp/snmpOutPkts" oid=".1.3.6.1.2.1.11.2" type="C" seq="9"/>
<get parameter="snmp/snmpInTotalRegVars" oid=".1.3.6.1.2.1.11.13" type="C"
seq="10"/>
</process>
</operations>

<operation name="bandwidthCheck" snmp-interface="java" priority="1" loop="true" loop-
period="1000">

<description>
composite operation demonstrating the functionality of a bandwidth check on a specific
interface
</description>
<process>
<get parameter="portUsedBWIn" oid=".1.3.6.1.4.1.326.2.2.2.1.2.2.1.11" type="C"
seq="1"/>
<get parameter="portUsedBWOut" oid=".1.3.6.1.4.1.326.2.2.2.1.2.2.1.17" type="C"
seq="2"/>

<calc name="bandwidth" type="add" parameterlseq="1" parameter2seq="2" seq="3"
deriv="true" dt="1000">
<if comparator="greater" value="100">
<exec command="echo 'Throughput greater than 100 packets/s' "/>
</if>
</calc>
</process>
</operations>
<operation name="Create ATM_VPC" snmp-interface="java" priority="1">
<description>
This operation creates conditionally an ATM VPC (if number of VPs on Part is
less than 10
</description>
<process>
<get parameter="PortNumPathsIn" oid=".1.3.6.1.4.1.326.2.2.2.1.2.2.1.8" type="I"
seq="9" deriv="false" dt="100">
<if comparator="less" value="10">
<get paramete: PortNumPathsOut"
©0id=".1.3.6.1.4.1.326.2.2.2.1.2.2.1.14" type="I" seq="9" deriv="false" dt="100">
<if comparator="less" value="10">
<set parameter="pathupc"
©0id=".1.3.6.1.4.1.326.2.2.2.1.3.2.1.13" type="I" value="1" seq="5"/>
<set parameter="InVpcPathr"
o0id=".1.3.6.1.4.1.326.2.2.2.1.3.2.1.2" type="I" value="1" geqg="6"/>
<get parameter="QutVpcPathr"
0id=".1.3.6.1.4.1.326.2.2.2.1.3.2.1.4" type="I" value="2" seq="7"/>
<set parameter="origPathStatus"
0id=".1.3.6.1.4.1.326.2.2.2.1.3.3.1.3" type="I" value="0" seq="8"/>
</if>
</get>
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Table V. Continued

</if>
</get>
</process>
</operation>
</operationss>
</element -management -scheme>

5. NETWORK MANAGEMENT LAYER ENGINE

NML management provides a higher-level view of the network and can
therefore significantly boost the scalability [22] of our framework. In particular,
the NML engine and the respective XML NML API can be used to implement
XML management applications targeting mutli-element networks. The network
management engine makes use of the EML XML engine to interface to individual
network elements. Based on several EML systems, the NML engine can carry out
operations involving multiple devices and combining multiple EML operations.

The NML engine reveals many similarities to the EML engine. Figure 4
depicts the main building blocks of the NML system. The NML Engine exposes
an XML API that is structured according to an XML schema. Tables II includes
the XML schema definition used in our prototype implementation. The NML API
contains composite NML operations consisting of composite EML operations,
which are invoked through a distributed mechanism. Composite EML operations
are executed from the EML XML engines residing on each network device. The
NML engine operates as follows:

e Parses the XML NML API document and resolves the composite EML
operations. This includes identifying the node targeted in each one of
the EML operations and extracting parameter values. An XPath/XQuery
module performs these tasks through locating the EML operations within
the EML APIs. Alternatively, composite EML operations can be cached
and lookup up in a repository.

Table VI. Sample EML Application

<?xml version="1.0" encoding="UTF-8"?>
<xmlnet-request xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation=".\elmApp_v1l.0.xsd">
<name>NMScheme</name>
<!-- required -->
<dns-name>atml.atm.ntua.gr</dns-name>
<l-- required -->
<ip-address>147.102.7.20</ip-address>
<caller>Soldatos</caller>
<operations-requests>
<operation name="bandwidthCheck" snmp-interface="java" priority="1">
</operation>
<operation name="Create ATM_VPC" snmp-interface="java" priority="1">
<parameter name='"channelupc" seq="5" type="I" value="2"/>
<parameter name="channelvValidateStatus" seq="8" type="I" value="1"/>

</operation>
</operations-request>
xmlnet-request>

A
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e Delegates composite EML operations to EML XML systems. This entails
the task of constructing the appropriate EML XML application documents.

An XML management engine resolves composite NML operations to com-
posite EML operations, constructs the respective EML applications, and delivers
them to the EML engines. At the same time it collects the XML documents re-
sulting from the EML operations and assembles the XML result. The NML API
and application XML schema definitions are respectively illustrated in Tables II
and I'V.

The NML engine architecture addresses error handling and security issues.
Error handling and consistency issues arise because NML operations consist of
several EML operations. The NML engine keeps track of the success of the under-
lying operations. Accordingly it notifies network managers of the results. Element
consistency hinges on the underlying capabilities of the EML engine. As the EML
engines can restore state, the NML engine can delegate NML restoration to them
through analyzing NML state restoration to EML state restoration processes. As
far as security is concerned, the NML engine should make provisions for encrypt-
ing NML messages, as well as generated EML messages. EML engines handle
lower-level security issues.

Manager
(Application)
XML_NML_Application XML_Result
XML RPC
XML NMLCAPI({IEEE

P1520 U- Intefface)

XML

XML Management > Parsing & Cache
Engine or Xpath/XQuery

Engine

XM L- RP C, SO AP

XML EML XML EML
Engine Engine

Fig. 4. Network management layer engine
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6. PROTOTYPE IMPLEMENTATION

A prototype of the EML engine has been implemented, along with a proof-
of-concept implementation of the NML subsystem. The resulting system is called
XMLNET and is publicly available at http://www.telecom.ntua.gr/xmlnet. We
specified two XML schemas (i.e., depicted in Tables I and II) defining structur-
ing of composite EML and NML operations. The implementation supports the
composition language described in Section 4. While this is not a fully fledged pro-
gramming language, it clearly demonstrates the benefits of composite operations.

The EML engine implements the architecture in Fig. 2. The SNMP/XML
gateway (SXG) from Strauss and Klie [2, 3] is used to execute atomic operations
based on HTTP calls from upper layers. Alternatively, a Java-SNMP API can be
used to execute atomic SNMP operations on the device. Executing atomic SNMP
operations based on a Java API (i.e., non XML management) system constitutes a
slight deviation from the pure XML-based nature of the system. Note however that
providing an alternative way of executing SNMP operations was expedient since
the version of the SXG gateway module that we make use of, does not support
instance creation/deletion. This resulted in lack of functionality for configuration
operations, which was alleviated based on the Java-API implementation, as shown
in Fig. 5. Therefore, XMLNET relies on Java-SNMP API for creating and de-
stroying instances in the scope of SNMP set operations, while get operations can
be executed based on either the Java API or the SXG. We expect future versions
of the gateway to support instance creation and deletion, thus allowing for a pure
XML implementation.

The XML Information model used in the EML engine is produced through
running mibdump and libsmi for the target devices. A script constructing the XML
Information model for a given SNMP device has been implemented. Running this
script for each new device, allows the device to be managed through the XMLNET
system. In the case of instance creation/deletion operations, the XML information
model can be bypassed, so that atomic operations are executed through passing
OIDs to the Java API. These exceptional cases making use of the Java API are
supported in the XML schema defining the EML API.

The resolution of composite EML operations to atomic operations is based
on the DOM cache paradigm. The cache is initialized following a DOM-based
parsing of the EML API document. A DOM parser is favored over SAX (Simple
API for XML), since the performance penalty of the DOM parsing is imposed only
during initialization of the EML engine. Furthermore, global EML information
(e.g., IP address, SNMP community words) is supplied during initialization.

The XML management engine exports an XML-RPC interface and is capable
of executing XML EML applications based on Java SAX processing. XML oper-
ations are resolved in the DOM cached representation and accordingly mapped to
atomic operations. Atomic operations are in the sequel mapped to the appropriate
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vendor-specific MIB object. Using the EML engine network managers can specify
and implement EML management operations through authoring XML files. The
engine has been tested with various devices (e.g., workstations, ATM switches,
routers).

As far as network-level management is concerned a simple implementation
has been carried out. A rendering system has also been implemented based on Co-
coon (http://cocoon.apache.org/), which provides inherent support for component-
based development, flexibility in selecting and visualizing particular pieces of
management information and XSL mechanisms for transforming documents.

7. PERFORMANCE EVALUATION

Based on the prototype implementation of our XML system, we conducted
a set of performance measurements relating to the response times of composite
operations contained in XML documents and executed through the XMLNET
system. Our main objective was to investigate the additional performance penalty
imposed by the parsing of composite XML applications, compared to conventional
SNMP managers executing atomic operations. To this end, we compared the
response times of composite EML management operations executed through the
XMLNET system, with the respective response times of the atomic operations
contained within the composite EML operations. Response times presented in
the sequel constitute average figures over 10 measurements to absorb statistical
fluctuations in the load of the hosting machines, as well as in network conditions.

Figure 6 depicts the response times of composite EML operations executed
through the XMLNET system using the Java API as an underlying execution
mechanism of SNMP operations. Response times are shown for composite oper-
ations comprising 3, 5, 8, 10, and 15 atomic SNMP operations corresponding to
MIB II objects. We also illustrate the times required to execute the same num-
ber of atomic operations, as a set of distinct functions through the Java-SNMP
library. The main result stemming from Fig. 6 is that the XMLNET system incurs
a very slight performance overhead, being approximately in the range of very few
milliseconds (e.g., 3—4 ms). This is mainly due to the additional processing for
assembling the resulting XML document. Note that this overhead is quite high for
composite operations comprising a few constituent atomic operations (e.g., around
50% for three operations), but becomes gradually insignificant as the number of
atomic operations increases.

Similarly Fig. 7 illustrates the additional delay contributed by the XMLNET
system, when the SXG module is used for executing atomic SNMP operations on
the target device. In absolute numbers the additional delay is comparable to that
observed in the case of the Java-SNMP library (e.g., 3—4 ms). However, this delay
represents a very small percentage of the total delay, given the performance of the
version of the SXG module, which we use in the scope of the XMLNET. Note that
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Fig. 6. XMLNET vs. Java-SNMP response times for different numbers of atomic operations.

the two curves in Fig. 7, one corresponding to SXG and the other to the XMLNET
over SXG almost coincide. The SXG performs much worse that the Java-SNMP
library given that it is performing time consuming tasks (e.g., expensive DOM
parsing) and invoked as http servlet.

The extra delay introduced by the XMLNET system does not constitute a per-
formance bottleneck for enterprise network management. We therefore argue that
the flexibility of XMLNET for sophisticated application development, along with
the resulting cost effectiveness comes at a very low performance cost. Absolute
delay figures are decent though not appropriate for enterprise management. This is
due to the numerous overhead factors (e.g., Java EML parsing, SXG, HTTP SXG
invocation, Java Virtual Machine) entailed in the prototype implementation. The
overall performance can be significantly improved in the scope of an embedded
commercial implementation.

8. CONCLUSIONS

This paper presented recent advances in using XML technologies for network
management. Moreover, it introduced a framework for structuring and executing
XML management applications. This framework exploits XML technologies in
order to specify XML APIs for network devices, but also composite networks.
Based on this framework network managers can produce applications through
minimal effort (i.e., authoring XML documents). High-level network manage-
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Fig. 7. XMLNET vs. SXG response times for different numbers of atomic operations.
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ment interfaces are defined based on a format that can be standardized. This is an
advantage of the architecture over commercial NMS systems, which provide pro-
prietary high-level interfaces. High-level interfaces are important to automating a
host of network and traffic management operations [13—18, 23].

Key to this framework is the ability to define composite management op-
erations by synthesizing elementary SNMP operations. Composition is based on
a set of programming constructs including conditional statements, processing of
management quantities, looping as well as serial combinations of programming
operations. Based on these constructs a large number of routine network man-
agement tasks relating to configuration and performance management can be
supported through XML authoring. The programmability of the system can be
augmented, by enhancing the XML schema driving operations composition.

The proposed architecture opens new paths to cost effective network man-
agement, while at the same time increasing flexibility in producing network man-
agement applications. The architecture supports also Web Services, allowing for
standards-based integration with other systems. The benefits of XML technologies
for network management are evident in the prototype implementation.
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